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Abstract. In this thesis we present a new vertical methodology target-
ing the hw/sw co-design of embedded SoCs. For the suggested methodol-
ogy a digital design and verification tool named System Python (SysPy)
has been developed, using the strengths of the popular Python scripting
language. We exploit the features of the language to boost the productiv-
ity of processor-centric SoC designs for Field Programmable Gate Arrays
(FPGAs) implementation. In more details we developed methods to: (a)
support hardware descriptions using Python syntax and automatically
generate synthesizable VHDL code. (b) Support Python descriptions for
simulating the behavior of an embedded SoC in algorithmic/functional
level or using Register Transfer Level (RTL) descriptions and generate
digital simulation plots in a bit-true and cycle-accurate manner. (c) Sup-
port the use of C software development tools for the programming of the
processor core and (d) automatically generate Tcl scripts to integrate
with FPGA implementation tools and ease synthesis and physical imple-
mentation steps. Complex SoC’s have been designed and implemented
in FPGA devices and used as design cases to demonstrate the features of
the supported design flow. All designs use a processor IP core as the main
programmable system controller, used for data processing. Each design
follows the progress that we had in the development of our methodol-
ogy and highlights certain features of the tool. We believe that with our
methodology we cover the lack of existence of tools targeting the hw/sw
co-design and prototyping of FPGA based embedded SoCs.
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1 Introduction

Modern Field Programmable Gate Array (FPGA) devices can host very complex
digital designs. Most of the implemented System on Chips (SoCs) incorporate
at least one programmable microprocessor (uP) unit. The processor’s Intellec-
tual Property (IP) core is key elements for the rapid prototyping of new digital
systems, but on the other hand its usage raises a lot of design challenges that
have to be addressed in the design flow.
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The main goal of this dissertation was the development of methods and of
a design tool, called System Python (SysPy) targeting the hardware/software
co-design and verification, using hight-level abstract descriptions, of processor-
centric SoCs implemented using FPGAs. For the needs of the research, we eval-
uated Python’s programming features and especially the combination of script-
ing capabilities in a Linux shell, combined with Object Oriented Programming
(OOP) features. These supported features could be used to:

– Implement high-level abstract models of blocks, e.g. arithmetic, memory and
logic blocks, connect them using structural Python descriptions and trans-
late them automatically to FPGA synthesizable Very high speed integrated
circuit Hardware Description Language (VHDL), or use them to perform
Register Transfer Level (RTL) bit-true simulation of a system. The integra-
tion of the SciPy library in Python provides a large number of functions
which can be used for modeling arithmetic blocks.

– Build a framework and a design tool that implements the end-to-end design
flow of a processor-centric system-on-chip, which invokes/calls other hard-
ware and software related tools, e.g. logic synthesizers, software compilers,
simulation tools etc.

– Process the large number of text-based files generated during a hardware
design flow. Information extracted from generated text files is used many
times as an input for the next design step or can be transformed/parsed to
a different format.

While designing a complex digital system cannot be done automatically at a
press of a button, we envisioned a design tool that would integrate the majority
of the tools needed for an FPGA implementation of an embedded SoC. The first
and most difficult task was to build the Python-to-VHDL parser. For this task we
needed to define our supported coding style/syntax for the hardware descriptions
in Python. The syntax should support a level of abstraction but on the other
hand support features that are used in well established Hardware Description
Language (HDL) languages, like VHDL and Verilog. A lexical analyzer also
needed to recognize and track, in the user supplied Python descriptions, the
supported syntax and parse these parts of Python code that later on would be
mapped and translated to synthesizable VHDL.

The main contribution of this dissertation is to show that a modern pro-
gramming language like Python can be used to design, simulate and implement
processor-centric embedded SoCs, using high-level, abstract descriptions. This is
very useful especially early in the design flow when control and processing logic of
a system must be partitioned among software and hardware implementation. Our
research work also shows convincingly that Python is a good candidate language
to handle the large number of design tools needed to capture and implement a
SoC in an FPGA device, in terms of hardware and software development.



2 Importance of processor-centric Systems-on-Chip

Most of the complex SoC designs implemented nowadays using FPGAs are
processor-centric, where the uP is used as a gateway, implementing in software
different communication protocols needed to exchange data with other logic de-
vices on the same board or with a connected PC/server. Software executed by
the processor is also used to control and exchange data with other custom blocks
implemented in the FPGA fabric. Complex control and data processing logic can
now be easily partitioned between software and hardware inside the same FPGA
device. The latest devices from FPGA vendors, such as the Virtex-7 device from
Xilinx or the Arria-V device from Altera, include fast embedded dual-core ARM
processors which can communicate with the rest of the FPGA fabric using a
very fast data and control bus. New designs can be efficiently prototyped within
a few days, while the performance and power consumption of a SoC in an FPGA
device can be now compared with that of an ASIC implementation. Of course
for mass IC production the ASIC device remains the only option, especially in
terms of cost reduction.

2.1 Python’s innovative features used for digital design

For describing digital systems, choosing the proper language to develop the tool
was of great importance. The special features that are required in a design flow
targeting processor-centric designs and hw/sw co-design are:

– Integrate under the same scripting environment all the required tools for
hardware/software co-development and co-simulation.

– Support clear and powerful syntax that could be used to describe hardware
digital designs using HDL-like syntax or in an abstract way, using functions
to auto-generate HDL code.

Figure 1 shows how we have used Python to handle in SysPy the integra-
tion of the ready-to-use processor IP-core in a SoC design. FPGA synthesizable
VHDL code is generated from Python description for custom blocks along with
data/control bus interface/glue logic. SysPy generates Tcl scripts for each one of
the supported processor IP cores, which executes along with the FPGA synthesis
tools in a command line, in order to incorporate the processor subsystem in the
design. The tool also compiles, using the GNU Compiler Collection (GCC) C
tools, the processor’s control software along with any existing O/S kernel. FPGA
bitstream file along with the compiled software binary files are generated, since
SysPy makes all the necessary external tool calls (synthesizer, compiler), and
can be used for FPGA implementation. In previous work [13] we have presented
how SysPy can be used to provide Python level hardware descriptions to ease
the design flow of processor-centric SoCs implemented on FPGA devices.

Python has been used for the development of commercial and widely used
complex hardware and especially software development tool projects, where the
text manipulation and generation features of the language are exercised in the



Fig. 1. Generic processor-centric SoC diagram.

best way. Earlier efforts using Python in hardware design include the following:
PyHDL [1] allowed for structural descriptions which simplified system design
using optimized hardware objects. PHDL [2] used Python to support a higher
level of abstraction for hardware design. A designer can structurally describe
a system using components from a Python library and parameters’ selection
can alter the size of a module, e.g. the bus width. Other tools used Python
directly as an HDL. MyHDL [3] supports, as SysPy, behavioral, dataflow and
structural hardware blocks design capture, and provides behavioral simulation
functionalities, presenting text based simulation results. In addition,MyHDL can
translate Python descriptions to either VHDL or Verilog. However, unlike SysPy,
the above methods do not allow mixing Python with VHDL module descriptions
in a design (all system components must be described in Python). PyMTL [4]
targets digital hardware design by unifying functional, cycle-accurate and RTL
hardware descriptions. The tool provides HDL generation, by translating Python
descriptions to Verilog. Emphasis is placed on accelerating the functional and
RTL simulation by converting Python testbenches to C++. However, unlike
SysPy, the tool does not generate any files, e.g. Tcl scripts, folder hierarchy etc.,
to accelerate the FPGA implementation process by synthesis tools. Moreover,
the simulation models do not include timing and latency information. Most
important of all, none of the above described efforts focuses on handling processor
IP cores and their software development environment. None of the above also
supports creation of high-level verification models, in the way SysPy does, i.e.
by using algorithmic descriptions mixed with RTL level descriptions.

In Table 1 a comparison of the Python related tools targeting digital hardware
design is presented. All of the tools support Python code translation to RTL
code, but only SysPy and PHDL support generation of FPGA synthesizable
RTL code. Except from SysPy, only MyHDL supports behavioral simulation of



a designed system at the Python level, but no Value Change Dump (VCD) file
generation is supported, which is the industry’s standard for storing simulation
results. Except SysPy, none of the other tools support:

1. processor-centric designs and related C compiler tools handling for software
development.

2. RTL code generation using parameterized Python functions.
3. abstract simulation of a design by mapping hardware functionality to Python

function and classes.
4. hw/sw co-design using high-level hardware descriptions along with software

expressed using C code
5. simulation and generation of VCD files for top-level I/O signal visualization.
6. automatic generation of Tcl scripts for FPGA synthesis tools.

Support for

Tools

Python

to RTL

FPGA

synthesizable code

Behavioral

simulation

Hw/Sw

co-design

Processor-centric

design

Synthesis tools

integration References

PyHDL X - - - - - [1]

PHDL X X - - - - [2]

myHDL X - X - - - [3]

PyMTL X X X - - - [4]

SysPy X X X X X X [5]

Table 1. Python digital hardware related tools comparison.

In all design and simulation steps of our design flow we use Python struc-
tures/syntax, and not any custom-defined syntax, to describe the datapath of
the SoC and the related simulation models. All supported hardware description
and simulation programming structures are compatible with the basic coding
style used by the majority of Python programmers. In this way we tried to
ease modeling and implementation of a processor-centric SoC even by software
programmers with limited experience in hardware design.

3 SysPy digital design and verification features

In SysPy, Python acts as the backbone of a set of tools for hardware descrip-
tion as well as to incorporate other software tools. A typical design cycle starts
by providing the simulation models of the desired system and also the timing
information, e.g. main clock frequency, duration of the simulation, input data
etc. The hardware description can have an HDL-like syntax supported by SysPy
or a more abstract algorithmic-style syntax. The first syntax style can later be
translated by SysPy to synthesizable VHDL code, while the later one cannot
be directly translated to VHDL, but can help a designer to easily verify the
functionality of a system.



All the main features of SysPy are presented in the supported design flow
shown in Figure 2. The supported flow covers six major tasks related to the
design of a processor-centric SoC:

1. Description in HDL of components (modules) that are going to be connected
with a processor soft core.

2. Incorporation in a design of ready-to-use components and connection to a
processor core.

3. Functional simulation of Python code describing the behavior of hardware
blocks and of software executed by the processor

4. Generation of scripts for automating the software development flow for the
processor core, e.g. automated calls to C compiler tools, initialization of the
processor’s program memory in BRAMs etc.

5. Generation and execution of scripts to automate the processes involved in a
SoC’s design flow, e.g. Tcl scripts for FPGA synthesis tools etc.

6. Generation of meta-data XML description of Python described IP cores,
compatible with the IP-XACT standard [6].
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Fig. 2. Processor-centric SoC design flow using SysPy.

To demonstrate the processor-centric design and verification features of our
methodology, we present two large SoCs used as design cases to assess and im-
prove our tool’s features.



3.1 Biomolecular interaction networks simulation SoC design case

Advanced high performance computational techniques have been used the last
decade in several scientific domains to ease and accelerate simulation of complex
physical phenomena. Computational and systems biology is a rather new scien-
tific field that takes advantage of computing techniques to describe and simulate
complex biological phenomena. Stochastic simulations of biochemical reaction
networks, called BioModels [7], [8] can be performed to study the properties of
these biological systems. The main idea of the design of our SoC was to accept
as an input BioModel files and simulate the chemical reactions of the described
system using a stochastic simulation algorithm.

In [9] we have shown how using parallel processing and pipelining it is possible
to design a core that performs efficiently, stochastic simulations of biochemical
reaction networks (BioModels) based on the First Reaction Method (FRM) of
Gillespie’s Stochastic Simulation Algorithm (SSA) [10]. Using SysPy’s processor-
centric design and verification features, in [5],[14] we presented a flexible multi-
processor SoC around the Leon3 processor and connected to the SSA core. In this
design we proved how using SysPy we can automatically parse a BioModel file in
SBML format, which uses XML syntax to define a biochemical reaction network.
All the model’s important parameters are extracted and used to automatically
construct the memory structures and the top-level specification necessary for
synthesizing the SoC’s FPGA design. With this design approach the SoC can be
used to process any BioModel of interest (captured in SBML) without any user
intervention or required expertise in FPGA design.

Three different versions of the SSA core implementing the FRM algorithm
have been designed, using one (FRM1X), two (FRM2X) or four PEs (FRM4X)
operating in parallel (N=1 or 2 or 4). The values of parameters m (number of
reactions) and n (number of species) are automatically parsed from the BioModel
SBML file, while the rest of the parameters are declared by the user at the
top-level Python description. The mode parameter defines the SoC’s mode of
operation.

SSA core Reaction Cycle time (us) MReaction Cycles/sec.

FRM1X 1.356 0.737

FRM2X 0.93 1.075

FRM4X 0.73 1.37

Table 2. Throughput of the SSA cores at a clock frequency of 160MHz for a network
with m = 136 reactions and n = 93 molecular species.

Using the features of our tool we managed to easily connect the SSA IP
core to the Leon3 processor core. Leon is used to connect the SSA core to a
host PC and also provides to the core access to a fast SDRAM DDR2 256MB



memory module. The SSA core is connected through an interface FSM which
is attached on Leon’s AMBA bus, along with all other connected peripheral
devices. A top-level schematic of the SSA SoC is shown in Figure 3. For the
implementation of the SSA SoC we used an ML509 Xilinx board equipped with
a Virtex-5 XC5VLX110T-1 FPGA device. The board has also an SDRAM DDR2
256MB memory module clocked at 190MHz and a PHY Ethernet chip operating
at 10/100/1000Mbps.

The implemented SoC delivers performance (0.353MReactions/sec) that is
more than an order of magnitude higher compared to a computer cluster [11].
Since performance does not depend heavily on the specific BioModel used but
on its complexity we conclude that a well designed FPGA SoC implementation
can outperform cluster solutions for complex models. This is also not surprising
since the FPGA parallel implementation does not suffer from any costly off-chip
communication time overhead for distributing/collecting data during the parallel
simulation.

Fig. 3. SSA SoC. Connection of the SSA core to the Leon processor.

3.2 Audio processing SoC design case

Using the design of an audio signal processing SoC [12], we demonstrated the
verification and O/S based software development flow supported in SysPy. A
processor in an FPGA fetches audio files from a host PC through an FTP con-
nection and analyzes the audio information using a hardwired FIR filter dividing
the audible spectrum into four frequency regions. According to the filtered sig-
nal, the processor classifies a file into one of four music styles.The goal of SysPy’s
verification mechanism is to combine in the same testbench abstract algorithmic
descriptions, RTL hardware descriptions and embedded software code for the
processor core. It is possible to interchangeably use: a) SciPy (Matlab-like) algo-
rithmic descriptions for arithmetic operations mapped in hardware and b) em-
bedded C code executed by a processor core, to build bit-true and cycle-accurate



system-level verification models and generate digital waveforms to assess a SoC’s
behavior.

In Figure 4, a typical testbench in SysPy i) describes, using HDL-like syntax,
the main elements of a pipelined datapath. ii) Python code in SciPy is used to
describe in an algorithmic way functionality of hardware blocks not yet defined
in HDL. iii) The same functionality can be expressed using C code, in case the
required SoC functions need to be ported to software executed by a processor
core. iv) Signals plots are generated during simulation in SciPy to observe signals
behavior and also SysPy generates VCD files to represent the I/O signals of the
system in binary format.
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C implementation
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algorithm

SciPy algorithm
import swig,scipy
def proc0(clk):

if (rising_edge(clk):
data_buf = data_in
if (control == '1'):
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Fig. 4. Simulation flow in SysPy using RTL and algorithmic models.

Using Python simulation models, we were able to make decisions regarding
key aspects of the hw/sw design space, such as: a) filter properties e.g. fixed-
point notation, number of taps, filter tap value and cutoff frequencies, b) data
buffers size and control signals between the processor core and the filter bank
and c) software running on the processor in a Linux kernel, that allows data
to be handled in a file oriented manner. In Figure 5 a block level schematic of
the simulation model is presented that reflects the partitioning of functionality
between hardware and software. The text in parentheses designates the type of
Python structure used to simulate each block. Software modules are represented
using dashed line boxes inside the processors block, while the rest of the blocks
correspond to hardware functionality. Software handles music file I/O, trans-
mits the audio samples to the input FIFO, reads back the filtered samples and
finally classifies the audio files by analyzing the filtered audio bands. Simulated



hardware functionality in the SoC involves the FIFO memories, the interface
FSM handling the data traffic from and to the FIFO memories and the four FIR
filters.
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Fig. 5. a) Abstract modeling of the SoC using SysPy and SciPy, b) diagrams of the
Python classes used in the SoC’s testbench.

Two types of waveforms in SysPy can help a designer decide about system
features early in the design flow: a) arithmetic plots in SciPy prove the cor-
rectness of an algorithmic model and b) digital signal plots in VCD format,
where the variables of an algorithm in SysPy are converted (utilizing ready-to-
use functions) to binary fixed-point format (bit-true) and plotted along with
time information (cycle-accurate).

(a)

(b)

Time (ms)

7ns delay

random delay

Fig. 6. a) Plots of the filtered audio signals using SciPy, b) waveform of the SoC’s I/O
signals using GTKWave.

In the waveforms, all the clock, reset, control and data signals, are presented.
The filter outputs are presented after a user defined delay in the testbench (7ns).
Also the input fifo ready control signal mimics the way the processor provides



audio samples to the input data buffer asynchronously for realistic simulation.
We implemented the system using the ML509 Xilinx board with a medium
size Virtex-5 FPGA device (XC5VLX110T-1), 256MB SDRAM DDR2 mem-
ory clocked at 190MHz, a PHY Ethernet chip and a serial RS-232 transceiver.
Our SoC is a synchronous digital design, using a 90MHz domain for the filters’
datapath and a 160MHz domain for the processor and the rest of the blocks.
According to the specification, the logic synthesizer was able to synthesize the
appropriate clock trees and reset circuitry.

4 Conclusions

In this work we demonstrated how a popular and freely available language like
Python, can be used as a unified environment/platform to describe a SoC in
a high abstraction level, verify it and deliver RTL FPGA-synthesizable code.
Across all design and simulation steps in our flow we use Python structures/syntax,
and not any custom-defined syntax, to describe the datapath of the SoC and the
related simulation models. This is very important since the main target group
of a high-level design tool are engineers and scientists who have little or no ex-
perience at all in digital hardware design. The goal in this case is to deliver a
tool where a high-level interface can be used to:

– Design a SoC in a block-oriented way, using IP cores in RTL or netlist format
and apply minimum effort to include any required digital glue logic between
the blocks.

– Support a high-level verification flow, where Python descriptions can be
used along with Matlab-like or C descriptions to simulate a digital block in
a functional/algorithmic level and also in a cycle-accurate Register-Transfer-
Level.

– Ease the use of digital synthesis and physical implementation tools for FP-
GAs, by auto-generating synthesis and compilation scripts.

– Provide tools to interface a SoC design after its implementation, in the form
of software components running in parallel on the processor-core in the SoC
and in the host PC connected to the SoC.

All four items in the previous list are critical in modern SoC designs. We
believe that SysPy comes as an integrated environment and utilizes Python
best programming practices like object oriented programming, text processing
features, associative lists and ready-to-use numerical libraries, in order to design,
verify, implement and test a processor-centric SoC. SysPy supports the most
common and basic Python syntax and also any third-party tool or file format
used or called within SysPy is adopted by the EDA industry and the software
community tools, like Tcl, VCD, Linux OS, SciPy and gcc compiler. In this way
our tool was implemented on top of already existing, popular and standard tools
used in a hw/sw co-design flow and we do not introduce any new, custom defined
and “exotic” practices that would be valid only in SysPy.



To get feedback from the community we provide SysPy as an open source
tool through a public code repository [15]. Many code examples are provided
along with information on how to setup the tool. This work has been supported
by the Greek State Scholarships Foundation (IKY) under grant 2008-5530.
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